Биотехнологии – медицине будущего
Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего», состоявшейся в новосибирском Академгородке в июле 2017 г. Среди организаторов научного форума – Институт химической биологии и фундаментальной медицины и Институт цитологии и генетики СО РАН, а также Новосибирский национальный исследовательский государственный университет, где биомедицинские исследования ведутся в рамках стратегической академической единицы «Синтетическая биология», объединяющей ряд российских и зарубежных участников, в первую очередь институты СО РАН биологического профиля. В первой, вводной статье выпуска ее авторы дают обзор самых актуальных направлений и перспективных результатов исследований, связанных с разработкой и внедрением в практическую медицину новых генно-инженерных, клеточных, тканевых, иммунобиологических и цифровых технологий, часть из которых детально представлена в других статьях номера
Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего. В результате исследований последних лет были разработаны эффективные диагностические методы, появились возможности для рационального конструирования противовирусных, противобактериальных и противоопухолевых препаратов, средств генотерапии и геномного редактирования. Современные биомедицинские технологии все в большей степени начинают влиять на экономику и определять качество жизни людей.
К настоящему времени детально исследованы строение и функции основных биологических молекул и разработаны методы синтеза белков и нуклеиновых кислот. Эти биополимеры по своей природе являются «интеллектуальными» материалами, так как способны высокоспецифично «узнавать» и воздействовать на определенные биологические мишени. Путем направленного «программирования» таких макромолекул можно создавать рецепторные молекулярные конструкции для аналитических систем, а также лекарственные препараты, избирательно воздействующие на конкретные генетические программы или белки.
«Интеллектуальные препараты», созданные методами синтетической биологии, открывают возможности для таргетной (целенаправленной) терапии аутоиммунных, онкологических, наследственных и инфекционных заболеваний. Это дает основание говорить о внедрении в медицинскую практику подходов персонализированной медицины, ориентированной на лечение конкретного человека.
С помощью современных медицинских технологий и фармпрепаратов сегодня удается излечивать многие болезни, представлявшие в прошлом огромную медицинскую проблему. Но с развитием практической медицины и ростом продолжительности жизни все более актуальной становится задача здравоохранения в самом прямом смысле этого слова: не просто бороться с болезнями, но поддерживать имеющееся здоровье, чтобы человек мог вести активный образ жизни и оставаться полноценным членом общества до глубокой старости.
БУДЕМ ЗДОРОВЫ! Современные методы геномного секвенирования широко внедряются в медицину, и в ближайшем будущем все пациенты будут иметь генетические паспорта. Сведения о наследственных особенностях пациента – основа прогностической персонализированной медицины. Предупрежденный, как известно, вооружен. Человек, осведомленный о возможных рисках, может организовать свою жизнь таким образом, чтобы не допустить развития заболевания. Это касается и образа жизни, и выбора продуктов питания и терапевтических препаратов.При условии постоянного отслеживания набора маркеров, сигнализирующих об отклонениях в работе организма, можно вовремя провести их коррекцию. Уже сейчас существует множество методов мониторинга состояния организма: например, с помощью датчиков, следящих за работой сердечно-сосудистой системы и качеством сна или устройств, анализирующих газообразные продукты в выдыхаемом человеком воздухе. Огромные возможности открываются в связи с развитием малоинвазивных технологий жидкостной биопсии и технологий анализа белков и пептидов, циркулирующих в кровотоке. На ранних стадиях болезни корректировать состояние организма во многих случаях можно «мягкими» методами: меняя характер питания, используя добавочные микроэлементы, витамины и пробиотики. В последнее время особое внимание уделяется возможностям корректировки отклонений в составе кишечной микрофлоры человека, которые ассоциированы с развитием большого числа патологических состояний.
Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни.
В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма.
«Умная» диагностика
Для управления здоровьем необходимо иметь эффективные и простые малоинвазивные методы ранней диагностики заболеваний и определения индивидуальной чувствительности к терапевтическим препаратам, а также факторам внешней среды. Например, должны быть решены (и уже решаются) такие задачи, как создание систем для генной диагностики и выявления возбудителей инфекционных заболеваний человека, разработка методов количественного определения белков и нуклеиновых кислот – маркеров заболеваний.
Отдельно стоит выделить создание методов ранней неинвазивной диагностики (жидкостная биопсия ) опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания.
Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует.
Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК , т. е. те РНК, которые не являются матрицей для синтеза белков. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. В Институте молекулярной и клеточной биологии СО РАН (ИМКБ СО РАН, Новосибирск) и ИХБФМ СО РАН идентифицирован ряд микроРНК – перспективных маркеров опухолевых заболеваний.
УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней (туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных), фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК.ИХБФМ СО РАН участвовал в реализации двух крупных международных проектов по разработке олигонуклеотидных микрочипов, финансировавшихся американской Программой сотрудничества в области биотехнологий Департамента здравоохранения США (Biotechnology Engagement Program, US Department of Health and Human Services , BTEP/DHHS). В рамках первого проекта с участием специалистов ИМБ им. В. А. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов (на стеклянной подложке и с гелевыми спотами), а также портативный флуоресцентный детектор для их анализа. В рамках второго проекта был создан универсальный микрочип для типирования вируса гриппа А, позволяющий достоверно различать 30 подтипов этого вируса на основе определения двух поверхностных белков вируса – гемагглютинина и нейраминидазы
С помощью современных технологий секвенирования РНК и ДНК может быть создана платформа для диагностики и прогноза онкологических заболеваний человека на основе анализа содержания микроРНК и генотипирования, т. е. установления конкретных генетических вариантов того или иного гена, а также для определения профилей экспрессии (активности) генов. Такой подход предполагает возможность быстрого и одновременного проведения множества анализов с помощью современных устройств – биологических микрочипов .
Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. В. А. Энгельгардта Российской академии наук (Москва) еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий.
Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.
Мировой лидер «биочипостроения» – американская компания Affymetrix Inc . – производит биочипы с высокой плотностью молекулярных зондов, основываясь на фотолитографических технологиях, использующихся для получения полупроводниковых микросхем. На одном таком чипе на площади менее 2 см 2 могут располагаться миллионы точек-спотов размером в несколько микрон. Каждая подобная точка содержит несколько миллионов одинаковых олигонуклеотидов, ковалентно связанных с поверхностью микрочипаРазвитие биоаналитических диагностических методов требует постоянного повышения чувствительности – способности давать достоверный сигнал при регистрации малых количеств детектируемого вещества. Биосенсоры – это новое поколение устройств, позволяющих специфично анализировать содержание различных маркеров заболеваний в образцах сложного состава, что особенно важно при диагностике заболеваний.
ИХБФМ СО РАН в сотрудничестве с новосибирским Институтом физики полупроводников СО РАН разрабатывает микробиосенсоры на основе полевых транзисторов , являющихся одними из самых чувствительных аналитических устройств. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента.
«Комплементарное» лекарство
Расшифровка геномов человека и возбудителей различных инфекций открыла дорогу для разработки радикальных подходов к терапии болезней путем направленного воздействия на их первопричину – генетические программы, ответственные за развитие патологических процессов. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.
Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. Это свойство называется «комплементарностью»Такое воздействие может быть осуществлено с помощью фрагментов нуклеиновых кислот – синтетических олигонуклеотидов , способных избирательно взаимодействовать с определенными нуклеотидными последовательностями в составе генов-мишеней по принципу комплементарности . Сама идея использовать олигонуклеотиды для направленного воздействия на гены была впервые выдвинута в лаборатории природных полимеров (впоследствии – отдел биохимии) Новосибирского института биоорганической химии СО РАН (ныне – Институт химической биологии и фундаментальной медицины СО РАН). В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК.
Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов (антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования). Исследования последних лет показали, что на основе антисмысловых олигонуклеотидов можно получить широкий спектр биологически активных веществ, действующих на различные генетические структуры и запускающих процессы, приводящие к временному «выключению» генов либо изменению генетических программ – появлению мутаций . Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции.
«ЛЕЧИМ» БЕЛОК Регуляция экспрессии генов под действием «антисмысловых» олигонуклеотидов возможна на различных уровнях. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. е. синтеза белка. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. При одном из таких нарушений в клетках синтезируется «неправильный» дистрофин – белок, являющийся важным структурным компонентом мышечной ткани. Это приводит к возникновению тяжелого заболевания – миодистрофии Дюшенна. В ИХБФМ СО РАН разработаны терапевтические олигонуклеотиды для лечения этого заболевания, и уже подана заявка на соответствующий патент.Сегодня антисмысловые олигонуклеотиды и РНК, подавляющие функции мРНК и вирусных РНК, применяются не только в биологических исследованиях. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику.
Лаборатория биомедицинской химии ИХБФМ СО РАН, работающая в этом направлении, была создана в 2013 г. благодаря научному мегагранту Правительства РФ. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. Альтман. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты.
В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.
В ИХБФМ СО РАН впервые в мире были синтезированы фосфорилгуанидиновые производные олигонуклеотидов. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.
Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc . (США). После многолетних клинических исследований были введены в медицинскую практику антисмысловые препараты: Kynamro – снижающий уровень «плохого» холестерина, Alicaforsen – для лечения язвенного колита и Spinraza – для терапии дистрофии Дюшенна. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Лидер в создании терапевтических интерферирующих РНК – компания Alnylam Pharmaceuticals – также проводит клинические испытания целой серии препаратов для лечения тяжелых заболеваний (таких как наследственный амилоидоз, тяжелые формы гиперхолестеролемии, гемофилия), эффективные методы терапии которых в настоящее время отсутствуют«Антисмысловое» воздействие на матричные РНК не ограничивается простым блокированием сплайсинга (процесса «созревания» РНК) или синтеза белка. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. При этом олигонуклеотид – индуктор расщепления – может в дальнейшем связаться с другой молекулой РНК и повторить свое действие. В ИХБФМ СО РАН исследовали действие олигонуклеотидов, образующих при связывании с мРНК комплексы, которые могут служить субстратами фермента РНКазы Р. Этот фермент и сам представляет собой РНК с каталитическими свойствами (рибозим ).
Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции . Суть этого явления в том, что, попадая в клетку, длинные дцРНК разрезаются на короткие фрагменты (так называемые малые интерферирующие РНК , siPНК), комплементарные определенному участку матричной РНК. Связываясь с такой мРНК, siPНК запускают действие ферментативного механизма, разрушающего молекулу-мишень.
Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. В ИХБФМ СО РАН на основе малых интерферирующих РНК сконструированы перспективные противоопухолевые препараты, показавшие хорошие результаты в экспериментах на животных. Одна из интересных находок – двуцепочечные РНК оригинального строения, стимулирующие в организме производство интерферона , эффективно подавляющие процесс метастазирования опухолей. Хорошее проникновение препарата в клетки обеспечивают носители – новые катионные липосомы (липидные пузырьки), разработанные совместно со специалистами Московского государственного университета тонких химических технологий имени М. В. Ломоносова.
Новые роли нуклеиновых кислот
Разработка метода полимеразной цепной реакции, позволяющего в неограниченных количествах размножать нуклеиновые кислоты – ДНК и РНК, и появление технологий молекулярной селекции нуклеиновых кислот сделали возможным создание искусственных РНК и ДНК с заданными свойствами. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами . На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.
Один из мировых лидеров в этой области – американская компания Soma Logic Inc . – создает так называемые сомамеры , которые селективно отбирают из библиотек химически модифицированных нуклеиновых кислот по уровню сродства к тем или иным мишеням. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.
Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Сегодня созданы приборы, позволяющие быстро «собирать» искусственные гены и/или бактериальные и вирусные геномы, аналоги которых в природе отсутствуют.Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh . Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4-8 тыс. разных олигонуклеотидов. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. разных олигонуклеотидов. За сутки таким образом можно получить до полумиллиона олигонуклеотидов – строительных блоков будущих генов
Среди аптамеров, имеющих сродство к клинически значимым мишеням, к настоящему времени имеются кандидаты на терапевтические препараты, достигшие третьей, ключевой фазы клинических испытаний. Один из них – Macugen – уже используется в клинической практике для терапии заболеваний сетчатки глаза; препарат для лечения возрастной макулярной дегенерации сетчатки Fovista успешно заканчивает испытания. И на очереди множество подобных препаратов.
Но терапия – это не единственное предназначение аптамеров: они вызывают огромный интерес у биоаналитиков в качестве распознающих молекул при создании аптамерных биосенсоров .
В ИХБФМ совместно с Институтом биофизики СО РАН (Красноярск) разрабатываются биолюминесцентные аптасенсоры с переключаемой структурой. Получены аптамеры, которые играют роль репортерного блока сенсора, к Са 2+ -активируемому фотопротеину обелину , представляющему собой удобную биолюминесцентную метку. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета.
Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная (информационная) РНК. Компания Moderna Therapeutics (США) сейчас проводит масштабные клинические исследования мРНК. При попадании в клетку мРНК действуют в ней как ее собственные. В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных (вирус гриппа, вирус Зика, цитомегаловирус и др.) и онкологических заболеваний.
Белки как лекарство
Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике. В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний.
Сейчас появляются все новые противоопухолевые белковые препараты. Примером может служить препарат лактаптин , созданный в ИХБФМ СО РАН на основе фрагмента одного из основных белков молока человека. Исследователи обнаружили, что этот пептид индуцирует апоптоз («самоубийство») клеток стандартной опухолевой клеточной культуры – аденокарциномы молочной железы человека. С использованием методов генной инженерии был получен ряд структурных аналогов лактаптина, из которых был выбран наиболее эффективный.
Испытания на лабораторных животных подтвердили безопасность препарата и его противоопухолевую и антиметастатическую активность в отношении ряда опухолей человека. Уже разработана технология получения лактаптина в субстанции и лекарственной форме, изготовлены первые экспериментальные партии препарата.
Терапевтические антитела все шире применяются и для лечения вирусных инфекций. Специалистам ИХБФМ СО РАН удалось генно-инженерными методами создать гуманизированное антитело против вируса клещевого энцефалита. Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров.
Вторжение в наследственность
Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой. Технологии геномного редактирования , основанные на применении РНК-белковой системы CRISPR/Cas, способны распознавать определенные последовательности ДНК и вносить в них разрывы. При «ремонте» (репарации ) таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы.
Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения . Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего.
С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии. Речь идет о вирусах, встраивающих свой геном в клеточные структуры организма, где он оказывается недоступным для современных противовирусных препаратов. К таким вирусам относятся ВИЧ‑1, вирусы гепатита В, папилломавирусы, полиомавирусы и ряд других. Системы геномного редактирования могут инактивировать вирусную ДНК внутри клетки, разрезав ее на безопасные фрагменты либо внеся в нее инактивирующие мутации.
Очевидно, что применение системы CRISPR/Cas в качестве средства коррекции мутаций человека станет возможным лишь после ее усовершенствования с целью обеспечения высокого уровня специфичности и проведения широкого спектра испытаний. Кроме того, для успешной борьбы с опасными вирусными инфекциями необходимо решить проблему эффективной доставки терапевтических агентов в целевые клетки.
Сначала была клетка – стволовая
Одним из наиболее быстро развивающихся направлений в медицине является клеточная терапия . В ведущих странах уже проходят клинические испытания клеточных технологий, разработанных для лечения аутоиммунных, аллергических, онкологических и хронических вирусных заболеваний.
В России пионерные работы по созданию средств терапии на основе стволовых клеток и клеточных вакцин были выполнены в Институте фундаментальной и клинической иммунологии СО РАН (Новосибирск). В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме.
Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. С. М. Закияна. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия.
Разработка методов получения из обычных соматических клеток плюрипотентных стволовых , способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов.
Так, специалисты ИХБФМ СО РАН и Национального медицинского исследовательского центра им. Е. Н. Мешалкина (Новосибирск) разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга . С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон. В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма.
Микробиом как объект и субъект терапии
К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Ведутся исследования и сложных микробиологических сообществ, постоянно связанных с человеком, – микробиомов .
Существенный вклад в эту область исследований внесли и отечественные ученые. Так, специалисты ГНЦ ВБ «Вектор» (Кольцово, Новосибирская обл.) впервые в мире расшифровали геномы вирусов Марбург и натуральной оспы, а ученые ИХБФМ СО РАН – геномы вируса клещевого энцефалита, возбудителей клещевого боррелиоза, распространенных на территории РФ. Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей.
В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков , благоприятствующих размножению полезных бактерий, а также прием бактериофагов (вирусов бактерий), избирательно убивающих «вредные» микроорганизмы.
В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. Россия – одна из немногих стран, где применение бактериофагов в медицине разрешено. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии.
Решением ее занимаются в ряде научно-исследовательских организаций РФ, в том числе в ИХБФМ СО РАН. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений. Разрабатываются и методы коррекции нарушений состава микробиома человека.
Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах , способных поражать только опухолевые клетки. В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США. Работы в этой области ведутся и в России, в них принимают участие специалисты из московских и новосибирских научно-исследовательских организаций: ИМБ РАН, ГНЦ ВБ «Вектор», Новосибирского государственного университета и ИХБФМ СО РАН.
Быстрое развитие синтетической биологии дает основание ожидать в ближайшие годы важных открытий и появления новых биомедицинских технологий, которые избавят человечество от многих проблем и позволят реально управлять здоровьем, а не только лечить наследственные и «благоприобретенные» заболевания.
Фронт исследований в этой области чрезвычайно широк. Уже сейчас доступные гаджеты представляют собой не просто игрушки, но реально полезные приборы, ежедневно обеспечивающие человека информацией, необходимой для контроля и поддержания здоровья. Новые технологии быстрого углубленного обследования дают возможность предсказать или своевременно обнаружить развитие болезни, а персонализированные препараты на основе «умных» информационных биополимеров позволят радикально решить проблемы борьбы с инфекционными и генетическими заболеваниями в самом ближайшем будущем.
Литература
Брызгунова О. Е., Лактионов П. П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике // Acta Naturae. 2015. Т. 7. № 3(26). С. 54-60.
Власов В. В., еще две фамилии и др. Комплементарные здоровью. Прошлое, настоящее и будущее антисмысловых технологий // НАУКА из первых рук. 2014. T. 55. № 1. С. 38-49.
Власов В. В., Воробьев П. Е., Пышный Д. В. и др. Правда о фаготерапии, или памятка врачу и пациенту // НАУКА из первых рук. 2016. Т. 70. № 4. С. 58-65.
Власов В. В., Закиян С. М., Медведев С. П. «Редакторы геномов». От «цинковых пальцев» до CRISPR // НАУКА из первых рук. 2014. Т. 56. № 2. С. 44-53.
Лифшиц Г. И., Слепухина А. А., Субботовская А. И. и др. Измерение параметров гемостаза: приборная база и перспективы развития // Медицинская техника. 2016. Т. 298. № 4. С. 48-52.
Рихтер В. А. Женское молоко – источник потенциального лекарства от рака // НАУКА из первых рук. 2013. Т. 52. № 4. С. 26-31.
Kupryushkin M. S., Pyshnyi D. V., Stetsenko D. A. Phosphoryl guanidines: a new type of nucleic Acid analogues // Acta Naturae. 2014. V. 6. № 4(23). P. 116-118.
Nasedkina T. V., Guseva N. A., Gra O. A. et al. Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays // Mol Diagn Ther. 2009. V. 13. N. 2. P. 91-102.
Ponomaryova A. A., Morozkin E. S., Rykova E. Y. et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer // Experimental Lung Research. 2016. V. 42 N. 2. P. 95-102.
Vorobyeva M., Vorobjev P. and Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications // Molecules. 2016. V. 21 N. 12. P. 1612-1633.
Сегодня перед биотехнологом стоит много нерешённых технологических задач. Можно изменять биологические организмы для обеспечения потребностей людей с помощью клеточных и генно-инженерных методов. Например, улучшать качество продуктов, получать новые виды растений и модифицировать животных, придавать живым организмам необходимые свойства и создавать новые лекарственные препараты методами генной инженерии, искусственного отбора, гибридизации.
Однако, чтобы работать биотехнологом, нужно знать не только генетику, молекулярную биологию, биохимию, клеточную биологию, но также ботанику, химию, математику, информационные технологии, физику и другое. Грубо говоря, биотехнологи - это инженеры в области естественных и точных наук. Генеральный директор инновационной биотехнологической Biocad Дмитрий Морозов рассказал об этой интересной профессии и будущем биотехнологий.
Biocad - это международная инновационная биотехнологическая компания. В ней есть научно-исследовательский центр, проводятся доклинические и клинические исследования собственных фармацевтических препаратов. Департамент перспективных исследований Biocad занимается разработкой лекарственных препаратов передовой генной и клеточной терапии, а, кроме того, поиском и анализом сигнальных путей, закономерностей и мишеней, которые позволяют разрабатывать препараты превентивной медицины.
Дмитрий Морозов,
генеральный директор компании Biocad
Что такое биотехнология?
Биотехнология - это использование живых систем, клеток, организмов для практических нужд человека. То есть использование современной науки для манипуляции с живыми объектами, чтобы получить некую выгоду и улучшить жизнь человека.
Биотехнология отталкивается от потребностей. Например, не зря люди ездят на север и изучают гейзеры. Они понимают, что 10 лет могут искать и ничего не найти. Но они всё равно это делают, потому что рано или поздно найдут какую-нибудь бактерию, которая позволит делать дешёвое биотопливо, используя один ген этой бактерии. Так или иначе каждый человек, когда занимается наукой, надеется её применить (кроме теоретических физиков, хотя, наверное, они тоже захотели бы в космос полететь). В компании Biocad мы используем микроорганизмы для создания лекарств.
В биотехнологии много дисциплин, и все успешные проекты и направления связаны с их комбинацией.
Говорят, все открытия происходят на стыке разных специальностей: математика, биология - биоинформатика; биология, химия - биохимия; медицина, информатика, биология - биомедицинская информатика. Это всё отдельные блоки, которыми занимаются разные люди. Биотехнология сегодня, наверное, более всего уделяет внимание созданию лекарств разных типов. Кроме фармацевтического направления биотехнологии интересно сельское хозяйство (улучшение свойств еды), экология, энергетика (получение биотоплива) и прочее. И, конечно, в будущем можно думать о коррекции человека.
Генная инженерия и биотехнология
В биотехнологии важное место занимает генная инженерия. Она широко распространена в исследованиях, однако вовсе не обязательно использовать её методы, чтобы получить полезные свойства у объекта. Например, можно разобраться в особенностях метаболизма организма: как он живёт в нормальной среде обитания и что получится, если мы переведём его в другую среду обитания, с другими питательными факторами, в другую атмосферу - возможно, это поможет ему в итоге, и это может быстрее размножаться. Но это же не генная инженерия.
Биотехнология - это манипуляции со знаниями, которые есть о данном объекте. Генная инженерия просто расширяет круг возможностей, разных комбинаций, даёт возможность совершать манипуляции на уровне молекул, поэтому более точна.
Биотехнология на самом деле существует столько, сколько сельское хозяйство. В сельском хозяйстве часто есть конкретная практическая цель - например, вывести породу быстрых лошадей или устойчивое к холоду растение. Этим люди занимаются уже сотни лет с помощью селекции, которая на самом деле является генетическим методом отбора.
Биотехнологическая этика: как общество относится к биотеху?
Люди по-разному воспринимают нововведения в биотехнологии. Есть негативные и позитивные примеры восприятия.
Негативные - это, например, мнение, что внедрение нового приведёт к появлению вирусов, которые будут распространяться по всему миру и от которых нет ни вакцины, ни лечения, и что периодические эпидемии именно с этим и связаны.
Из позитивных - например, можно создать вирус, который на время меняет цвет глаз. Постепенно они становятся своего цвета, и каплями антибиотиков можно снова сделать их голубыми. Это мало связано со здравоохранением в привычном смысле, но всё равно здорово. Подобные манипуляции уже в теории можно делать, и к таким технологиям общество относится позитивно и с улыбкой. Однако в целом люди боятся внедрения новых технологий. Да и чтобы внедрить новое, нужно на высшем уровне обсудить этические вопросы того или иного воздействия препарата, и обычно это происходит долго.
Биотехнология в Biocad: лечение нуклеиновой кислотой
Два года назад в Biocad мы открыли Департамент перспективных исследований, основная цель которого - создание лекарственных продуктов передовой генной терапии. Этот термин объединяет три группы лекарственных препаратов, которые не похожи на все остальные лекарства, к которым мы привыкли.
Во-первых, это препараты для генной терапии, во-вторых, это препараты, в основе которых лежит манипуляция с соматическими и стволовыми клетками человека, в-третьих, это препараты тканевой инженерии.
В основе действия классических лекарств лежит либо малая молекула химической природы, либо какой-то белок, например, антитело, который можно легко получить с помощью биотехнологических методов. В нашей разработке лекарственным веществом, то есть действующим фактором, является нуклеиновая кислота РНК или ДНК.
Это новый способ воздействия на организм человека. Это направление не так давно стало бурно развиваться, поэтому к нему пока что относятся с осторожностью.
Как работают препараты для генной терапии
Наше лекарство - это рекомбинантный вирус, наночастица на базе вируса, внутри которой находится ген, которого недостаёт больному человеку. Направлены эти продукты, как правило, на заболевания, которые плохо поддаются лечению (наследственные заболевания с тяжёлыми проявлениями вплоть до летального исхода в раннем возрасте: дистрофия, нарушение зрения, световосприятия, иммунодефициты). Это в основном моногенные заболевания, в которых проявление болезни обусловлено дефектом одного гена. В таких случаях они очень хорошо лечатся. В лаборатории мы создаем терапевтические вирусные частицы, а биоинформатики помогают нам моделировать их работу.
В случае полигенных заболеваний , например, рака, можно использовать методы генной терапии для модификаций клеток иммунной системы человека, чтобы получать иммунные клетки с высокой специфичностью к опухолевым клеткам. В лабораториях наши учёные осуществляют полный цикл разработки этих двух типов продуктов (от идеи до создания прототипов, готовых для тестирования на животных). Такого в России нет, наверное, нигде.
Перспективные исследования в биотехнологии
медицина будущего: Развитие новых типов лекарств
Наш департамент назван по аналогии с Управлением перспективных исследовательских проектов США (DARPA). Они пытаются внедрять достижения науки в целях увеличения обороноспособности страны - это ускоренная регенерация, универсальные доноры, оружие и прочее.
Возможно, в ближайшие 5-10 лет благодаря взаимосвязи кибернетики и биотехнологии действительно будут созданы умные лекарства. Например, создание очень маленьких чипов : это капсула или робот с частицами лекарственного средства, циркулирующие в крови, из которых в зависимости от состояния человека нужное вещество будет впрыскиваться в кровь. Подобным занимаются, например, в MIT. Уже есть успешные примеры: в зависимости от уровня глюкозы в организм вбрасывается инсулин, что минимизирует степень инвазивности лечебной процедуры. Человек один раз внедрил чип, сделал инъекцию и на очень длительное время забыл, что нужно принимать лекарство.
Даже известный футуролог Рэй Курцвелл говорит, что люди начнут жить дольше с помощью нанороботов к 2025 году. Скорее всего, он имеет ввиду препараты, которые будут бороться с онкологическими заболеваниями.
Нанороботы - новый формат препаратов, потому что с точки зрения веществ, из которых состоят лекарства, люди уже всё сделали. Мы ничего больше предложить не можем - типов химических соединений, которые можно использовать для терапии немного. Это либо белки, либо малые молекулы, либо нуклеиновые кислоты , которые теперь тоже применяются.
Вариантов и тех, и других, и третьих, конечно, можно сделать безграничное количество, но они имеют ограниченный потенциал применения, так как работают по общим химическим принципам. По-другому воздействовать на клетку уже никак невозможно.
Поэтому в будущем главным вопросом будет доставка нанороботами этих трёх «блоков», что приведет к появлению новых форматов терапии.
Конечно, большинство хочет просто принять таблетку, но не все лекарственные вещества можно в неё «вложить». Более простой вариант - капсула. Более эффективный - инъекция и суппозитории. И если был бы какой-то универсальный способ лечения, например, закалывать какой-то чип с концентратом лекарственного средства под кожу, но раз в год, думаю, многие бы на это пошли.
Фото предоставлено компанией Biocad.
Диагностика заболеваний
Развитие малоинвазивных методов диагностики будет нужно человеку, чтобы, грубо говоря, по капле крови можно было быстро определять состояние человека: есть ли у него онкологическое заболевание и, если да, то есть ли метастазы, что за рак и прочее.
Сейчас это можно делать по определённому количеству миллилитров крови с помощью высокопроизводительных методов, но пока это довольно дорого. Мы идём к индивидуальному профилированию человека, чтобы знать про себя всё до уровня молекулы. Человек будет понимать, что конкретно с ним происходит в данный момент.
Может возникнуть нечто вроде социальной сети профайлов, где будут храниться все данные - например, по экспрессии генов за последний месяц. Кажется, что здесь всё легко, но на самом деле это миллиарды последовательностей, сотни генов с разными мутациями, разной степени значимости. Поэтому нужен будет новый класс врачей-теоретиков, которые будут уметь интерпретировать это огромное количество данных.
Регенерация, искусственный интеллект
Наверное, в будущем мы научимся регенерировать ткани и органы. Уже сейчас выращивают органы с нуля до реального размера из клетки благодаря 3D-печати. Также пытаются восстанавливать спинной мозг после травмы - печатать нейроны в месте повреждения. Иными словами, прививать человеку его же клетки, размноженные в лабораторных условиях.
Также учёные будут больше использовать искусственный интеллект и нейросети, чтобы создавать новые лекарственные препараты. Самообучающийся ИИ должен будет сам накапливать достаточное количество знаний, которые позволят ему давать правильные ответы. Если это не контролировать, может, наверное, произойти катастрофа, но, с другой стороны, он сможет значительно развязать руки исследователям и дать возможность генерировать новые идеи, ведь ИИ будет брать на себя все рутинные процедуры.
В начале 2019 года в Санкт-Петербурге состоится значимое для российской науки и медицины событие: 26–30 января пройдет очередная зимняя школа Future Biotech . Спикерами зимней школы в этом году станут ученые из ведущих научных центров мира: Гарварда, Йеля, Университетского колледжа в Лондоне и многих других. Также в школе примут участие именитые российские ученые, деятельные бизнесмены, руководители наукоемких стартапов и увлеченные наукой студенты, аспиранты и молодые исследователи. Ключевая тема в этом году неразрывно связана с медициной и посвящена технологиям редактирования генома и генной терапии.
Философия школы Future Biotech
В-третьих, это безусловно беспрецедентный по своим масштабам научный контент! На лекциях можно будет узнать о самых последних открытиях из первых рук - непосредственно от ученых, ведущих исследования, - и обсудить с ними самые «горячие» подробности.
Таким образом, школа одновременно является тем самым связующим звеном между научными исследованиями и бизнесом, которое пока недостаточно развито в России, а также площадкой для развития профессионального нетворкинга и прокачивания своих знаний.
В этом году ключевой темой школы станут редактирование генома и генная терапия. Сегодня эти технологии - наиболее перспективные и финансируемые направления мировой медицины и фармацевтики. В 2016 году рынок препаратов для генной терапии оценивался в $584 млн. А к 2023 году, по прогнозам аналитиков, глобальная выручка от продажи таких препаратов превысит $4,4 млрд - это более 30% роста ежегодно!
Современные методы генной инженерии в комплексе с другими подходами на наших глазах совершают революцию в борьбе с ранее неизлечимыми генетическими, онкологическими и аутоиммунными заболеваниями. Генная инженерия приходит нам на помощь и в борьбе с устойчивыми к большинству известных антибиотиков бактериями, которые грозят стать главной причиной смертности в мире уже к 2050 году.
Истории и методам генной инженерии посвящены две статьи нашего спецпроекта «12 методов в картинках » . - Ред .
Сегодня на мировом рынке присутствуют лишь единичные препараты на основе генной терапии, десятки находятся на разных стадиях клинических испытаний. Как следует из отчета Allied Market Research , подавляющее большинство препаратов генной терапии производится для больных с онкологическими патологиями. И в ближайшее время - как минимум до 2023 года - эта ниша сохранит свое первенство на рынке. Следом за лекарствами от рака идут средства генной терапии редких заболеваний, сердечно-сосудистых болезней, неврологических расстройств и инфекций .
Ближайшее десятилетие пройдет под эгидой внедрения новых терапий, направленных на лечение агрессивных видов рака, генетических, нейродегенеративных, аутоиммунных патологий, а также внедрения в практику антибиотиков нового поколения. И в этот переломный момент российской науке и индустрии необходимо приложить все усилия, чтобы занять свое место на мировом биофармацевтическом рынке, стать активным участником перспективных исследований и, таким образом, обеспечить россиянам доступ к передовой медицине в будущем. Шагом на пути к достижению этой глобальной цели должна стать зимняя школа Future Biotech 2019. Для этого ее организаторы пригласили в Санкт-Петербург ведущих мировых ученых, работы которых охватывают наиболее перспективные направления биомедицины и биотехнологий. Об этих направлениях мы и поговорим в следующей главе.
Какие прорывы в медицине нас ожидают?
Мир, в котором почти нет неизлечимых болезней, - уже не просто мечта фантастов: это мир, где методы генотерапии и редактирования генома стали главным оружием медицины (рис. 3). Уже сегодня благодаря этим подходам удалось достигнуть значительного прогресса в лечении нескольких ранее неизлечимых патологий, о которых мы и поговорим далее.
Генотерапия: на пути к миру без неизлечимых заболеваний
Чтобы продолжить рассказ, давайте освежим в памяти терминологию. Наследственные заболевания, вызванные «поломками» в ДНК, называются генетическими . Если они спровоцированы мутацией в одном единственном гене - их принято называть моногенными . К таким болезням относятся, например, фенилкетонурия , болезнь Гоше и серповидноклеточная анемия . Существуют патологии, причиной которых является поломка сразу в нескольких генах (они называются полигенными ) или дефект значительной части хромосомы (хромосомные болезни). К полигенным заболеваниям относятся некоторые виды рака, сахарный диабет, шизофрения, эпилепсия, ишемическая болезнь сердца и многое другое. Наибольшего успеха сегодня удалось добиться в лечении моногенных генетических заболеваний, так как исправить один-единственный ген - методически более простая задача, чем бороться с полигенными болезнями или хромосомными аномалиями (однако и здесь всё не безнадёжно!). В борьбе с генетическими болезнями генная терапия и редактирование генома - главные инструменты будущего в руках генного инженера.
Концепция генной терапии элегантна и красива, как всё гениальное. Она заключается в доставке в клетку здорового гена, который заменяет собой его «дефектный» вариант. Большинство прошедших клинические испытания и одобренных видов терапий использует вирусные векторные системы для доставки и встраивания здорового варианта гена в клетки (рис. 4). В ближайшем будущем ученые пророчат развитие невирусных систем доставки генов в клетку.
Существует два основных подхода: постнатальная генотерапия (иногда ее называют соматической) и генотерапия плода (иначе пренатальная, или фетальная генная терапия, о которой мы недавно писали в статье «Фетальная генная терапия: от теории - к практике » ).
В первом случае гены вводят в соматические клетки организма, что позволяет улучшить состояние пациента, однако отредактированный геном не передается потомкам, так как редактирование затрагивает лишь отдельные популяции клеток, не изменяя при этом геномы клеток, продуцирующих гаметы. Такой способ оправдан для борьбы, например, с онкологическими заболеваниями. Во втором случае ДНК вводят в эмбрион на ранней стадии развития, что позволяет отредактировать все, большинство или значительную часть клеток плода. При данном подходе изменения наследуются, так как половые клетки тоже будут нести эти изменения. Этот подход перспективен для борьбы с наиболее тяжелыми наследственными патологиями.
Американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) уже одобрило 16 препаратов на основе генной и клеточной терапии. Среди них есть средства для лечения агрессивных видов рака крови, предстательной железы и редкой наследуемой формы ретинальной слепоты.
Пренатальная терапия имеет ряд преимуществ перед постнатальной, самым большим из которых является помощь на ранней стадии развития болезни, когда патологический процесс еще не успел зайти далеко. Благодаря современным методам пренатальной диагностики исправлять дефектные гены можно на ранних сроках беременности, уже в 14–16 недель. Коррекция мутантных генов у развивающегося плода позволяет быстро увеличить популяцию стволовых клеток со «здоровым» вариантом гена, а значит, заболевание можно вылечить полностью или, по крайней мере, значительно облегчить его течение. Несмотря на радужные перспективы, на данный момент перед учеными стоит ряд нерешенных задач. Фетальная генная терапия увеличивает риск выкидыша и преждевременных родов из-за развития иммунных реакций у матери и ребенка. Кроме того, она может привести к неожиданным, а иногда и катастрофическим последствиям уже на постнатальной стадии развития. Вносимый ген может неспецифически встроиться в любое место генома и, таким образом, нарушить работу других генов, спровоцировав генетическое или онкологическое заболевание. Другой побочный эффект фетальной генотерапии - мозаицизм (явление, при котором часть клеток имеет «исправленный» ген, а остальные несут его «сломанную» версию), который может привести к весьма непредсказуемым последствиям в будущем.
С точки зрения потенциальных рисков очевидно, что фетальная генная терапия должна использоваться только для лечения тяжелых генетических заболеваний, других вариантов коррекции которых не существует. К таким патологиям относятся некоторые редкие генетические заболевания, например миодистрофия Дюшенна , спинальная мышечная атрофия , фатальная семейная бессонница , фенилкетонурия и фибродисплазия . Для их лечения сегодня активно разрабатывают варианты генных терапий, некоторые из которых находятся на финальных стадиях клинических испытаний. Среди редчайших генетических патологий, безусловно, есть и болезнь Гоше - нейродегенеративное заболевание, тяжелая форма которого на данный момент не поддается лечению и всегда летальна. Болезнь Гоше - самая частая форма среди редких наследственных ферментопатий , то есть болезней, связанных с дефектами ферментов. На ее примере была впервые продемонстрирована высокая эффективность фетальной генотерапии в экспериментах на мышах, а теперь ученые готовятся к испытаниям и на людях . Это значит, что будущее, где дети с вышеупомянутыми неизлечимыми генетическими заболеваниями смогут выздоравливать, наступит довольно скоро.
Генотерапия может быть чрезвычайно эффективна и в постнатальный период , в том числе для лечении взрослых пациентов. Спинальная мышечная атрофия (СМА) стала еще одним орфанным (то есть редким генетическим) заболеванием, долгожданную надежду на лечение которого подарила генная терапия . 23 декабря 2016 г. FDA зарегистрировало первое лекарство для СМАйликов (так ласково называют пациентов с этой болезнью) - нусинерсен (коммерческое название Spinraza ). По результатам клинических испытаний у 51% пациентов улучшились моторные навыки, а также снизились риск смерти и постоянной вентиляции легких по сравнению с контрольной группой.
Крайне эффективна постнатальная генная терапия и при борьбе с онкологическими заболеваниями, которые являются одной из лидирующих причин смертности в странах с высоким уровнем жизни по данным ВОЗ (Всемирной организации здравоохранения). На данный момент одобрено два препарата: Yescarta и Kymriah , направленных на лечение высокоагрессивных видов В-клеточной лимфомы с использованием технологии CAR-T. Суть этой технологии заключается в искусственной «настройке» иммунитета пациента против опухолевых клеток. У больного берут T-лимфоциты и в лаборатории при помощи безвредного вирусного вектора вводят в их геном ген химерного антигенного рецептора (CAR) , который позволяет модифицированным Т-клеткам узнавать специфический антиген на поверхности злокачественных B-клеток. Затем модифицированные Т-лимфоциты вновь вводятся в кровь пациента. Там они начинают атаковать собственные B-лимфоциты, уничтожая злокачественных «перебежчиков». Однако при данной терапии высок риск развития аутоиммунных реакций. Это связано с тем, что антигены, по которым наши воины (модифицированные Т-лимфоциты) узнают «перебежчиков», могут иногда встречаться и на поверхности здоровых клеток. Исследователи активно работают над решением этой проблемы .
Терапии на основе CAR-T - пожалуй, самый успешный на сегодняшний день вариант лечения на стыке клеточной и генной терапий! Эта технология позволяет добиться полной ремиссии примерно в половине случаев лечения или продлить жизнь пациентов в большинстве остальных случаев.
Генная терапия на Future Biotech
Технологии, в основе которых лежат редактирование геномов собственных клеток пациента (CAR-T) и РНК-интерференция, помимо биологических и биоэтических ограничений имеют еще одну серьезную проблему: экстремальная дороговизна! Например, полный курс лечения препаратом Yescarta стоит $350 000, а годовой курс терапии, включающей в себя еженедельные инъекции Patisiran , обойдется пациенту в $450 000. Все эти проблемы ученым и фармацевтическим компаниям предстоит решить в самом ближайшем будущем.
Технология CRISPR-Cas9. Самый точный инструмент редактирования генома
В последнее время в прессе постоянно пишут о разнообразных успехах этого подхода, и не зря: ведь технология редактирования генома с помощью системы CRISPR-Cas9 - это поистине эпохальная разработка (рис. 5)!
На «Биомолекуле» так много статей о великой и могучей технологии CRISPR-Cas9, что мы посвятили ей целый раздел ! - Ред.
Проблема столь массового распространения резистентности среди бактерий имеет множество причин. Сам процесс приобретения устойчивости естественен и неизбежен, однако злоупотребление антибиотиками, их неправильная утилизация и массовое попадание в окружающую среду ускорили этот процесс настолько, что некоторые инфекции не поддаются лечению даже комплексами из новых препаратов. Поэтому поиск новых антибиотиков является приоритетной задачей для современной науки .
Самая распространенная мишень всех известных антибиотиков - аппарат синтеза белка бактерий. Аппарат трансляции прокариот отличается от нашего, что позволяет использовать специфические ингибиторы синтеза белка у бактерий без вреда для собственных клеток нашего организма. Из-за массового распространения генов устойчивости у бактерий ученые активно изучают их белоксинтезирующий аппарат и ищут новые мишени и ингибиторы трансляции. На
То, что такому маленькому и плохо развитому острову как Куба удалось оказаться во главе научных исследований, представляющих интерес для всего мира, не перестает удивлять.
Только в области борьбы с раком список достижений весьма внушительный. Доктор Рональдо Перес Родригес из Центра молекулярной иммунологии недавно заявил на международной конференции, посвященной этой проблеме о том, что Куба располагает 28 зарегистрированными и находящими на разных этапах разработки препаратами для борьбы с раком.
Различные терапевтические вакцины, моноклональные антитела, интерфероны и пептиды, разрабатываемые в научных учреждениях в области биотехнологий , сегодня являются надеждой на облегчение для многих миллионов страдающих от этой страшной болезни.
Однако кубинские достижения в этой области оказались наиболее впечатляющими. Созданный 30 лет назад Центр генной инженерии и биотехнологии (ЦГИБ), достиг значительных результатов и снес весомый вклад в диагностику, профилактику и лечение более чем двух десятков заболеваний.
В настоящее время ЦГИБ разрабатывает более 50 научно-исследовательских проектов, которые включают вакцины, рекомбинантные белки для терапевтического применения, синтетические пептиды и ветеринарные продукты для сельскохозяйственного применения.
Наиболее значимым продуктом является Heberprot-P , облегчающий заживление сложных язв диабетической стопы и уменьшающий риск ампутации. Препарат уже принимают около 49 тысяч пациентов на Кубе и 185 тысяч за ее пределами.
Эти цифры, несомненно, увеличатся после того, как этот медикамент будет включен в список жизненно важных лекарственных препаратов России. Елена Максимкина - директор Департамента государственного регулирования обращения лекарственных средств Министерства здравоохранения Российской Федерации и сопредседатель Российско-Кубинской рабочей группы по здравоохранению, обратила внимание на положительные результаты клинических исследований средства Heberprot-P, а министр здравоохранения Вероника Скворцова прокомментировала его эффективность во время телемоста президенту Владимиру Путину .
Препарат улучшит жизнь 200 тысяч россиян, страдающих от этого заболевания каждый год, сократит число ампутаций и тем самым снизит скорость потери трудоспособности, а также увеличит продолжительность жизни.
Другими инновационными продуктами кубинской биофармацевтической отрасли, привлекшими к себе внимание, как в России, так и в других странах стали: HeberNasvac - лекарственное средство для лечения гепатита В и Proctokinasa - медикамент с доказанной эффективностью лечения геморроя. В области сельского хозяйства и ветеринарии выделяют биологический родентицид Биорат (Biorat) и нематицид HeberNem .
«Куба является поразительным примером успеха в научных исследованиях», заявил Кирилл Каем, вице-президент биомедицинского кластера Сколково. «Я не сразу поверил в то, что общий объем доходов от биофармацевтических продуктов на Кубе сравним с показателями в Российской Федерации», добавил он.
Кубинские исследовательские проекты в этой области, в основном связанные с онкологией и нейродегенеративными заболеваниями, в настоящее время, изучаются инновационным центром, и ожидается, что некоторые из них получат финансирование для проведения совместных исследований. Все свидетельствует в пользу того, что научное сотрудничество между Кубой и Россией в этой сфере будет развиваться.
Научный потенциал острова очень велик и это не случайно. Все дело в правительственной стратегии, которая была заложена в самом начале революции и насчитывает уже несколько десятилетий. «Будущее нашей страны обязательно должно быть будущим ученых людей», сказал Фидель Кастро еще в 1960 г. Даже в худшие годы кризиса, научное сообщество всегда имело господдержку, которая сегодня приносит результаты.
Если столь многое было достигнуто сейчас, несмотря на экономические трудности и блокаду со стороны США , ограничивающие доступ к технологиям и рынкам, чего сможет достичь этот научный потенциал в будущем, открывшись всему миру и когда ученые будут получать ту зарплату, которую они заслуживают? Возможно, тогда и наступит будущее ученых людей.
На площадках Академпарка и НГУ три дня проходят научные мероприятия Всероссийской конференции с международным участием «Биотехнология – медицине будущего».
Она объединила около 230 специалистов – от академиков до аспирантов – из 14 городов России, а также из Австралии, Беларуси, Германии, США и Японии. Как отметил в приветственном слове председатель оргкомитета конференции научный руководитель Института химической биологии и фундаментальной медицины СО РАН академик Валентин Викторович Власов, «…мероприятие изменило формат и расширило свои рамки».
«Первая такая конференция была проведена еще 17 лет назад, – уточнил В. Власов, – и долгое время она была чисто сибирской. Шла общеакадемическая программа «Фундаментальные науки в медицине», институты и группы получали по ней гранты, а на конференции участники из Сибири отчитывались о результатах: в Москве проводилась своя, для центральной части РАН. Сейчас мы сделали конференцию всероссийской по масштабу и более прогностической по тематике».
Пленарную части конференции открыли выступления двух приглашенных экспертов – академиков Александра Габибовича Габибова и Вадима Марковича Говоруна. Оба доклада опираются на труд крупных научных коллективов: Александр Габибов руководит московским Институтом биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН, Вадим Говорун возглавляет Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства. Эти организации активно сотрудничают с академическими учреждениями Сибири – в частности, с ФИЦ Институт цитологии и генетики СО РАН и с ИХБФМ СО РАН.
Академик А. Габибов обрисовал широкое направление исследований, целью которых является получение сверхспецифичных молекул. Были показаны конкретные приложения: например, уничтожение определенных типов клеток – как раковых (лимфомы), так и тех, которые дезактивируют нейронные связи при применении нервно-паралитических газов на основе фосфор-органических веществ (зарин, зоман, V-газы). «Принципиально важна разработка Александром Габибовым и его коллегами программ и приборов для высокопроизводительного поиска молекул и микроорганизмов с определенными свойствами, это принципиально новый подход к нахождению следующих поколений антибиотиков», – прокомментировал академик В. Власов. Академик В. Говорун посвятил свое выступление не менее широкому кругу вопросов, связанных с микробиомом человека – всей совокупностью населяющих нас микроорганизмов, болезнетворных и полезных, часть которых еще даже не известна. Особое внимание ученый уделил микрофлоре желудочно-кишечного тракта, где неизученная часть, по его мнению, составляет около 40 %, а воздействия на организм этой «фабрики иммунитета» находятся в широчайшем диапазоне – от диабета до преждевременных родов и так далее.
«С докладами выступают и другие замечательные ученые, – отметил академик В. Власов. – В частности, это член-корреспонденты РАН Мария Андреевна Лагарькова, Сергей Михайлович Деев и многие другие. В целом же конференция теперь имеет целью, прежде всего, постановку перспективных задач и установление новых контактов». После трех дней пленарных, секционных и постерных докладов в НГУ пройдет специализированная часть, посвященная стартапам в биомедицинских технологиях, и деловая игра «Стартап-Биотех».