Свойства функций непрерывных на отрезке. Наименьшее и наибольшее значения функции на отрезке. Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Решение.

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Определение . Если функция f (x ) определена на отрезке [a, b ], непрерывна в каждой точке интервала (a, b ), в точке a непрерывна справа, в точке b непрерывна слева, то говорят, что функция f (x ) непрерывна на отрезке [a, b ].

Другими словами, функция f (x ) непрерывна на отрезке [a, b ], если выполнены три условия:

1) "x 0 Î(a, b ): f (x ) = f (x 0);

2) f (x ) = f (a );

3) f (x ) = f (b ).

Для функций, непрерывных на отрезке, рассмотрим некоторые свойства, которые сформулируем в виде следующих теорем, не проводя доказательств.

Теорема 1 . Если функция f (x ) непрерывна на отрезке [a, b ], то она достигает на этом отрезке своего наименьшего и своего наибольшего значения.

Эта теорема утверждает (рис. 1.15), что на отрезке [a, b ] найдется такая точка x 1 , что f (x 1) £ f (x ) для любых x из [a, b ] и что найдется точка x 2 (x 2 Î[a, b ]) такая, что "x Î[a, b ] (f (x 2) ³ f (x )).

Значение f (x 1) является наибольшим для данной функции на [a, b ], а f (x 2) – наименьшим. Обозначим: f (x 1) = M , f (x 2) = m . Так как для f (x ) выполняется неравенство: "x Î[a, b ] m £ f (x ) £ M , то получаем следующее следствие из теоремы 1.

Следствие . Если функция f (x ) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема 2 . Если функция f (x ) непрерывна на отрезке [a,b ] и на концах отрезка принимает значения разных знаков, то найдется такая внутренняя точка x 0 отрезка [a, b ], в которой функция обращается в 0, т.е. $x 0 Î (a, b ) (f (x 0) = 0).

Эта теорема утверждает, что график функции y = f (x ), непрерывной на отрезке [a, b ], пересекает ось Ox хотя бы один раз, если значения f (a ) и f (b ) имеют противоположные знаки. Так, (рис. 1.16) f (a ) > 0, f (b ) < 0 и функция f (x ) обращается в 0 в точках x 1 , x 2 , x 3 .

Теорема 3 . Пусть функция f (x ) непрерывна на отрезке [a, b ], f (a ) = A , f (b ) = B и A ¹ B . (рис. 1.17). Тогда для любого числа C , заключенного между числами A и B , найдется такая внутренняя точка x 0 отрезка [a, b ], что f (x 0) = C .

Следствие . Если функция f (x ) непрерывна на отрезке [a, b ], m – наименьшее значение f (x ), M – наибольшее значение функции f (x ) на отрезке [a, b ], то функция принимает (хотя бы один раз) любое значение m , заключенное между m и M , а потому отрезок [m, M ] является множеством всех значений функции f (x ) на отрезке [a, b ].

Заметим, что если функция непрерывна на интервале (a, b ) или имеет на отрезке [a, b ] точки разрыва, то теоремы 1, 2, 3 для такой функции перестают быть верными.

В заключение рассмотрим теорему о существовании обратной функции.


Напомним, что под промежутком понимается отрезок либо интервал, либо полуинтервал конечный или бесконечный.

Теорема 4 . Пусть f (x ) непрерывна на промежутке X , возрастает (или убывает) на X и имеет множеством значений промежуток Y . Тогда для функции y = f (x ) существует обратная функция x = j (y ), определенная на промежутке Y , непрерывная и возрастающая (или убывающая) на Y с множеством значений X .

Замечание . Пусть функция x = j (y ) является обратной для функции f (x ). Так как обычно аргумент обозначают через x , а функцию через y , то запишем обратную функцию в виде y = j (x ).

Пример 1 . Функция y = x 2 (рис. 1.8, а) на множестве X = , если она непрерывна на интервале (a , b), непрерывна справа в точке a и непрерывна слева в точке b .

Функция называется непрерывной на отрезке , если она является непрерывной в интервале , непрерывной справа в точке , то есть и непрерывной слева в точке , то есть .

Замечание. Функция, непрерывная на отрезке [ a , b ] может быть разрывной в точках a и b (рис. 1)

Множество функций, непрерывных на отрезке [ a , b ] обозначается символом C [ a , b ].

Основные теоремы о функциях, непрерывных на отрезке.

Теорема 1 ( об ограниченности непрерывной функции ). Если функция f (x) непрерывна на отрезке [ a , b ], то она ограничена на этом отрезке, т.е. существует такое число C > 0, что " x О [ a , b ] выполняется неравенство | f (x)| ≤ C .

Теорема 2 (Вейерштрасс). Если функция f (x) непрерывна на отрезке [ a , b ], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m , т.е. существуют точки α , β О [ a , b ] такие, что m = f (α) ≤ f (x) ≤ f (β) = M для всех x О [ a , b ] (рис.2).

Наибольшее значение M обозначается символом max x О [ a , b ] f (x), а наименьшее значение m — символом min x О [ a , b ] f (x).
Теорема 3 (о существовании нуля). Если функция f (x) непрерывна на отрезке [ a , b ] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a , b) найдется по крайней мере одна точка ξ в которой f (ξ) = 0.
Геометрический смысл теоремы состоит в том, что график функции, удовлетворяющей условиям теоремы, обязательно пересечет ось OX (рис.3).

Замечание. На этой теореме основан метод приближенного решения уравнения
f (x) = 0, (1)
называемый методом бисекции (дихотомии) , или методом половинного деления.

Теорема 4 (Больцано–Коши). Если функция f (x) непрерывна на отрезке [ a , b ], то она принимает на (a , b) все промежуточные значения между f (a) и f (b).
Cуществование непрерывной обратной функции
Пусть функция y = f (x) определена, строго монотонна и непрерывна на отрезке [ a , b ]. Тогда на отрезке [ α , β ] (α = f (a), β = f (b)) cуществует обратная функция x = g (y), также строго монотонная и непрерывная на отрезке (α , β).

Определение 4. Функция называется непрерывной на отрезке, если она непрерывна в каждой точке этого отрезка (в точке a непрерывна справа, т.е. , а в точке b непрерывна слева, т. е.).

Все основные элементарные функции непрерывны в области их определения.

Свойства функций, непрерывных на отрезке:

  • 1) Если функция непрерывна на отрезке, то она ограничена на этом отрезке (первая теорема Вейерштрасса).
  • 2) Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наименьшего значения и наибольшего значения (вторая теорема Вейерштрасса) (см. рис. 2).
  • 3) Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то внутри отрезка существует хотя бы одна точка такая, что (теорема Больцано-Коши).

Точки разрыва функции и их классификация

функция непрерывность точка отрезок

Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. Если - точка разрыва функции, то в ней не выполняется хотя бы одно из трех условий непрерывности функции, указанных в определениях 1, 2, а именно:

1) Функция определена в окрестности точки, но не определена в самой точке. Так функция, рассмотренная в примере 2 а) имеет разрыв в точке, так как не определена в этой точке.

2) Функция определена в точке и ее окрестности, существуют односторонние пределы и, но они не равны между собой: . Например, функция из примера 2 б) определена в точке и ее окрестности, но, так как, а.

3) Функция определена в точке и ее окрестности, существуют односторонние пределы и, они равны между собой, но не равны значению функции в точке: . Например, функция. Здесь - точка разрыва: в этой точке функция определена, существуют односторонние пределы и, равные между собой, но, т. е. .

Точки разрыва функции классифицируются следующим образом.

Определение 5. Точка называется точкой разрыва первого рода функции, если в этой точке существуют конечные пределы и, но они не равны между собой: . Величина называется при этом скачком функции в точке.

Определение 6 . Точка называется точкой устранимого разрыва функции, если в этой точке существуют конечные пределы и, они равны между собой: , но сама функция не определена в точке, или определена, но.

Определение 7. Точка называется точкой разрыва второго рода функции, если в этой точке хотя бы один из односторонних пределов (или) не существует или равен бесконечности.

Пример 3. Найти точки разрыва следующих функций и определить их тип: а) б)

Решение. а) Функция определена и непрерывна на интервалах, и, так как на каждом из этих интервалов она задана непрерывными элементарными функциями. Следовательно, точками разрыва данной функции могут быть только те точки, в которых функция меняет свое аналитическое задание, т.е. точки и. Найдем односторонние пределы функции в точке:

Так как односторонние пределы существуют и конечны, но не равны между собой, то точка является точкой разрыва первого рода. Скачок функции:

Для точки находим.

Непрерывность элементарных функций

Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю).

Теорема. Пусть функции u = φ (x ) непрерывна в точке х 0 , а функция y = f (u ) непрерывна в точке u 0 = φ (х 0). Тогда сложная функция f (φ (x )) состоящая из непрерывных функций, непрерывна в точке x 0 .

Теорема. Если функция у = f (х ) непрерывна и строго монотонна на [а ; b ] оси Ох , то обратная функция у = φ (х ) также непрерывна и монотонна на соответствующем отрезке [c ;d ] оси Оу (без доказательства).

Непрерывные на отрезке функции имеют ряд важных свойств. Сформулируем их в виде теорем, не приводя доказательств.

Теорема (Вейерштрасса) . Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Изображенная на рисунке 5 функция у = f (x ) непрерывна на отрезке [а ; b ], принимает свое наибольшее значение М в точке x 1 , а наименьшее m - в точке х 2 . Для любого х [а ; b ] имеет место неравенство m f (x ) ≤ М .

Следствие. Если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема (Больцано - Коши). Если функция у = f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах неравные значения f (a ) = A и f (b ) = =В , то на этом отрезке она принимает и все промежуточные значения между А и В .

Геометрически теорема очевидна (см. рис. 6).

Для любого числа С , заключенного между А и В , найдется точка с внутри этого отрезка такая, что f (с ) = С . Прямая у = С пересечет график функции по крайней мере в одной точке.

Следствие. Если функция у = f (x ) непрерывна на отрезке [а ; b ] и на его концах принимает значения разных знаков, то внутри отрезка [а ; b ] найдется хотя бы одна точка с , в которой данная функция f (x ) обращается в нуль: f (с ) = 0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ox (см. рис. 7).

Рис. 7.