Линейный двигатель это. Современные тенденции в развитии линейных сервоприводов

Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать статор и ротор с обмотками обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость. Образовавшаяся плоская конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки статора такого двигателя подключить к сети трехфазного переменного тока , то образуется магнитное поле , ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f и длине полюсного деления t: V = 2пf . Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС , под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведет к появлению силы, действующей, по правилу Ленца , в направлении перемещения магнитного поля. Ротор - в дальнейшем будем называть его уже вторичным элементом - под действием этой силы начнет двигаться. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля S = (V - v)/V, где v - скорость движения элемента. Номинальное скольжение линейного двигателя равно 2-6%. Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Одно из достоинств линейного асинхронного двигателя заключается в том, что в качестве вторичного элемента может использоваться обычный металлический лист. Вторичный элемент при этом может располагаться также между двумя статорами, или между статором и ферромагнитным сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причем использование немагнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы. Принцип действия линейных двигателей со вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трехфазного переменного тока. Линейные двигатели очень часто работают в так называемом обращенном режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте. Например, статор неподвижно закреплен под полом вагона, а вторичный элемент представляет собой металлическую полосу между рельс, а иногда вторичным элементом служат сами рельсы. Одной из разновидностей линейных асинхронных двигателей являются трубчатый (коаксиальный) двигатель. Статор такого двигателя имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки (обмотки статора) и металлические шайбы, являющиеся частью магнитопровода . Катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент также трубчатой формы, выполненный из ферромагнитного материала. При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуцирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создает на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закрепленном статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока во вторичном элементе в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

Принцип действия линейных пьезоэлектрических двигателей, совершающих относительно большие возвратно-поступательные перемещения (несколько миллиметров или сантиметров), не отличается от принципа действия вращающихся двигателей. На рис. 6.4,а представлена конструктивная схема линейного двигателя с вибратором, совершающим продольные (П) и изгибные (И) колебания. Неподвижный вибратор 1 прижимается силой F п. к подвижной части 3 через износостойкие прокладки 2. Подвижная часть представляет собой стальной позиционер 3, перемещающийся на роликах 4. Если фазы продольных и изгибных колебаний согласовать таким образом, чтобы при удлинении вибратора он прижимался к позиционеру через левую прокладку, то позиционер будет перемещаться влево. При укорочении вибратора он прижимается к позиционеру через правую прокладку и позиционер продолжает двигаться влево. Изменение фазы продольных колебаний на 180° вызывает возвратное движение позиционера. У линейных пьезодвигателей рассмотренных выше конструкций разрешающая способность по перемещению не превышает 1-10мкм.

Рисунок 6.4

В некоторых прецизионных технологических установках, используемых, например, при изготовлении интегральных схем, в военных насекомообразных мини- и микророботах требуются исполнительные механизмы, осуществляющие перемещение в десятые или сотые доли микрометров. В качестве таких исполнительных механизмов, работающих без механических преобразователей, могут использоваться линейные пьезоэлектрические двигатели микроперемещений с управляемой деформацией преобразователя . У этих двигателей (рис. 6.4,б) рабочее перемещение осуществляет сам стержень пьезоэлемента 2, который обычно выполняется в виде столбика из пьезокерамических шайб, склеенных между собой. На торцах стержня расположены зажимы 1 и 3. Если зафиксировать зажим 1 и подать на электроды пьезоэлемента постоянное напряжение, приводящее к удлинению стержня пьезоэлемента, то конец стержня с зажимом 3 переместится вправо. Перемещение будет зависеть от приложенного напряжения. При использовании керамики с относительным удлинением (5-7)*10 -4 стержень длиной 50мм может обеспечить перемещение до 25мкм.

На этом же принципе могут быть построены и линейные шаговые двигатели с шагом в доли микрометров. После того, как правый конец стержня (рис. 6.4,б) переместился на заданный шаг, фиксируется зажим 3, освобождается зажим 1 и снимается напряжение с пьезоэлемента. Стержень сжимается до исходной длины, и его левый конец подтягивается к правому. После этого вновь фиксируется зажим 1, освобождается зажим 3 и подается напряжение на пьезоэлемент. В результате происходит шаговое перемещение двигателя и связанного с ним объекта управления на требуемое расстояние. Частота отработки шагов достигает 30-50 Гц. Весьма сложным узлом такого шагового двигателя является устройство фиксации зажимов на каждом шаге.

В заключение следует отметить основные достоинства и недостатки вращающихся и линейных пьезодвигателей. Важнейшими достоинствами пьезодвигателей, особенно при их использовании в робототехнических и компьютерных устройствах, являются следующие:

1. Высокая разрешающая способность по перемещению: до 1-10мкм в режиме преобразователя колебаний и до 0,01мкм – при использовании управляемых деформаций преобразователей.

2. Высокое быстродействие: время разгона и торможения составляют единицы миллисекунд.

3. Пьезоэлектрические двигатели обладают значительным усилием самоторможения при снятии напряжения питания за счет сил трения.

4. Диапазон регулирования скорости пьезодвигателей достигает 10 6 .

Пьезодвигатели хорошо встраиваются (интегрируются) в сложные механические узлы и применяются в приводах устройств считывания и записи информации ЭВМ, магнитофонов, видеомагнитофонов и киноаппаратов. Применение линейных пьезодвигателей для позиционирования считывающей головки позволяет повысить плотность записи на магнитных дисках в 2-3 раза.

Возможность получения у пьезоэлектрических исполнительных механизмов до 5 степеней свободы при минимальных угловых и линейных перемещениях звеньев определяет возможность их широкого применения в прецизионных системах автоматизации и управления. Например, в астрономии, в космических исследованиях – там, где требуется точная ориентация по весьма малым объектам; в ускорителях заряженных частиц, где необходимо удерживать пучок частиц в строго ограниченных геометрических координатах; в кристаллографических исследованиях.

Однако использование пьезодвигателей в исполнительных механизмах связано с рядом сложностей. Существенная зависимость резонансной частоты преобразователя от напряжения питания электродов, момента нагрузки и момента инерции на валу двигателя затрудняет обеспечение оптимального преобразования энергии. Регулировочные характеристики двигателя нелинейные, параболические; имеется довольно широкая зона нечувствительности. Механические характеристики довольно мягкие и имеют вид гипербол.

Компенсация этих недостатков может быть осуществлена путем выполнения исполнительного механизма с обратной связью по скорости. Обратная связь может быть реализована либо с непосредственным использованием измерителей скорости типа тахогенераторов, либо косвенным методом, основанным на том, что угловая скорость ротора пропорциональна активной мощности, потребляемой электронным преобразовательным устройством. При этом необходимо применение специальных способов управления высокочастотными источниками питания пьезоэлементов, которые при существенной нелинейности характеристик самих пьезопреобразователей и нелинейности механических и регулировочных характеристик двигательной части могли бы обеспечить устойчивую работу при сильных случайных возмущениях. На практике для обеспечения требуемых статических и динамических характеристик при регулировании или стабилизации скорости применяются:

  • амплитудный способ, основанный на регулировании амплитуды напряжения на электродах пьезоэлемента,
  • амплитудно-фазовый способ, основанный на регулировании амплитуды напряжения и сдвига по фазе тока на электродах пьезоэлемента.

Пьезоэлектрические двигатели теоретически могут иметь весьма высокие силовые и энергетические характеристики, т.к. только пьезоэлектрическая керамика преобразует электрическую энергию в механическую с КПД, превышающим в ряде случаев 90%. Однако потери мощности в остальных частях двигателя приводят к тому, что КПД реальных микродвигателей мощностью до 10Вт не превышает 10 – 25%.

Серийный выпуск и применение пьезодвигателей сдерживается сложностью изготовления хороших пьезокерамических и износостойких материалов. С этим связано в настоящее время ограничение мощности пьезодвигателей уровнем порядка 10Вт. Быстрый износ деталей, контактирующих в процессе передачи движения, ограничивает срок службы двигателей.

Линейный двигатель

Лине́йный дви́гатель - электродвигатель , у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле , а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя. Сейчас разработано множество разновидностей (типов) линейных электродвигателей, например, линейные асинхронные электродвигатели (ЛАД), линейные синхронные электродвигатели, линейные электромагнитные двигатели, линейные магнитоэлектрические двигатели, линейные магнитострикционные двигатели, линейные пьезоэлектрические (электрострикционные) двигатели и др. Многие типы линейных двигателей, такие как асинхронные, синхронные или постоянного тока, повторяют по принципу своего действия соответствующие двигатели вращательного движения , в то время как другие типы линейных двигателей (магнитострикционные, пьезоэлектрические и др.) не имеют практического исполнения как двигатели вращательного движения. Неподвижную часть линейного электродвигателя, получающую электроэнергию из сети, называют статором , или первичным элементом , а часть двигателя, получающая энергию от статора, называют вторичным элементом или якорем (название "ротор " к деталям линейного двигателя не применяется, т.к. слово "ротор" буквально означает "вращающийся", а в линейном двигателе вращения нет). Наибольшее распространение в транспорте и для больших линейных перемещений получили асинхронные и синхронные линейные двигатели, но применяются также линейные двигатели постоянного тока и линейные электромагнитные двигатели. Последние чаще всего используются для получения небольших перемещений рабочих органов и обеспечения при этом высокой точности и значительных тяговых усилий.

Асинхронный линейный двигатель

Представление об устройстве линейного асинхронного двигателя можно получить, если мысленно разрезать статор и ротор с обмотками обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость. Образовавшаяся плоская конструкция представляет собой принципиальную схему линейного двигателя. Если теперь обмотки статора такого двигателя подключить к сети трехфазного переменного тока , то образуется магнитное поле , ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f и длине полюсного деления t: V = 2tf. Это перемещающееся вдоль зазора магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС , под действием которой по обмотке начнут протекать токи. Взаимодействие токов с магнитным полем приведет к появлению силы, действующей, по правилу Ленца , в направлении перемещения магнитного поля. Ротор - в дальнейшем будем называть его уже вторичным элементом - под действием этой силы начнет двигаться. Как и в обычном асинхронном двигателе, перемещение элемента происходит с некоторым скольжением относительно поля S = (V - v)/V, где v - скорость движения элемента. Номинальное скольжение линейного двигателя равно 2-6%. Вторичный элемент линейного двигателя не всегда снабжается обмоткой. Одно из достоинств линейного асинхронного двигателя заключается в том, что в качестве вторичного элемента может использоваться обычный металлический лист. Вторичный элемент при этом может располагаться также между двумя статорами, или между статором и ферромагнитным сердечником. Вторичный элемент выполняется из меди, алюминия или стали, причем использование немагнитного вторичного элемента предполагает применение конструктивных схем с замыканием магнитного потока через ферромагнитные элементы. Принцип действия линейных двигателей со вторичным элементом в виде полосы повторяет работу обычного асинхронного двигателя с массивным ферромагнитным или полым немагнитным ротором. Обмотки статора линейных двигателей имеют те же схемы соединения, что и обычные асинхронные двигатели, и подключаются обычно к сети трехфазного переменного тока. Линейные двигатели очень часто работают в так называемом обращенном режиме движения, когда вторичный элемент неподвижен, а передвигается статор. Такой линейный двигатель, получивший название двигателя с подвижным статором, находит, в частности, широкое применение на электрическом транспорте. Например, статор неподвижно закреплен под полом вагона, а вторичный элемент представляет собой металлическую полосу между рельс, а иногда вторичным элементом служат сами рельсы. Одной из разновидностей линейных асинхронных двигателей являются трубчатый (коаксиальный) двигатель. Статор такого двигателя имеет вид трубы, внутри которой располагаются перемежающиеся между собой плоские дисковые катушки (обмотки статора) и металлические шайбы, являющиеся частью магнитопровода . Катушки двигателя соединяются группами и образуют обмотки отдельных фаз двигателя. Внутри статора помещается вторичный элемент также трубчатой формы, выполненный из ферромагнитного материала. При подключении к сети обмоток статора вдоль его внутренней поверхности образуется бегущее магнитное поле, которое индуцирует в теле вторичного элемента токи, направленные по его окружности. Взаимодействие этих токов с магнитным полем двигателя создает на вторичном элементе силу, действующую вдоль трубы, которая и вызывает (при закрепленном статоре) движение вторичного элемента в этом направлении. Трубчатая конструкция линейных двигателей характеризуется аксиальным направлением магнитного потока во вторичном элементе в отличие от плоского линейного двигателя, в котором магнитный поток имеет радиальное направление.

Синхронный линейный двигатель

Основной областью применения синхронных двигателей, где их преимущества проявляются особенно сильно, является высокоскоростной электрический транспорт . Дело в том, что по условиям нормальной эксплуатации такого транспорта необходимо иметь сравнительно большой воздушный зазор между подвижной частью и вторичным элементом. Асинхронный линейный двигатель имеет при этом очень низкий коэффициент мощности (cosφ), и его применение оказывается экономически невыгодным. Синхронный линейный двигатель, напротив, допускает наличие относительно большого воздушного зазора между статором и вторичным элементом и работает при этом с cosφ, близким к единице, и высоким КПД , достигающем 96%. Применение синхронных линейных двигателей в высокоскоростном транспорте сочетается, как правило, с магнитной подвеской вагонов и применением сверхпроводящих магнитов и обмоток возбуждения, что позволяет повысить комфортабельность движения и экономические показатели работы подвижного состава.

Применение линейных двигателей

  • Широкое применение линейные двигатели нашли в электрическом транспорте , чему способствовал целый ряд преимуществ этих двигателей: прямолинейность движения вторичного элемента (или статора), что естественно сочетается с характером движения различных транспортных средств, простота конструкции, отсутствие трущихся частей (энергия магнитного поля непосредственно преобразуется в механическую), что позволяет добиться высокой надежности и КПД. Еще одно преимущество связано с независимостью силы тяги от силы сцепления колес с рельсовым путем, что недостижимо для обычных систем электрической тяги. При использовании линейных двигателей исключается буксование колес электрического транспорта (именно этой причиной был обусловлен выбор линейного двигателя для ММТС), а ускорения и скорости движения средств транспорта могут быть сколь угодно высокими и ограничиваться только комфортабельностью движения, допустимой скоростью качения колес по рельсовому пути и дороге, и динамической устойчивостью ходовой части транспорта и пути.
  • Линейные асинхронные двигатели применяются для привода механизмов транспортировки грузов различных изделий. Такой конвейер имеет металлическую ленту, которая проходит внутри статоров линейного двигателя, являясь вторичным элементом. Применение линейного двигателя в этом случае позволяет снизить предварительное натяжение ленты и устранить ее проскальзывание, повысить скорость и надежность работы конвейера.
  • Линейный двигатель может применяться для машин ударного действия, например сваезабивных молотов , применяемых при дорожных работах и строительстве. Статор линейного двигателя располагается на стреле молота и может перемещаться по направляющим стрелы в вертикальном направлении с помощью лебедки . Ударная часть молота является одновременно вторичным элементом двигателя. Для подъема ударной части молота двигатель включается таким образом, чтобы бегущее поле было направлено вверх. При подходе ударной части к крайнему верхнему положению двигатель отключается и ударная часть опускается вниз на сваю под действием силы тяжести. В некоторых случаях двигатель не отключается, а реверсируется, что позволяет увеличить энергию удара. По мере заглубления сваи статор двигателя перемещается вниз с помощью лебедки. Электрический молот прост в изготовлении, не требует повышенной точности изготовления деталей, нечувствителен к изменению температуры и может вступать в работу практически мгновенно.

Линейные двигатели высокого и низкого ускорения

Все линейные двигатели их можно разделить на две категории:

  • двигатели низкого ускорения
  • двигатели высокого ускорения

Двигатели низкого ускорения используются в общественном транспорте (маглев , монорельс , метрополитен) как тяговые , а также в станках (лазерных, водорезных, сверлильно-фрезерных) и другом технологическом оборудовании в промышленности. Двигатели высокого ускорения весьма небольшие по длине, и обычно применяются, чтобы разогнать объект до высокой скорости, а затем выпустить его (см. пушка Гаусса). Они часто используются для исследований гиперскоростных столкновений, а также в специальных устройствах, таких, как оружие или пусковые установки космических кораблей [каких? ] .

Линейные двигатели широко используются также в приводах подачи металлорежущих станков и в робототехнике . Для повышения точности позиционирования часто используются линейные датчики положения.

Источники

Ссылки

  • Построение модели линейного асинхронного двигателя с помощью программы «ELCUT» и «FEMLAB»
  • Современное программное обеспечение для моделирования линейных асинхронных двигателей
  • Создание уточненной математической модели линейного асинхронного электродвигателя
Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина Центробежная турбина (радиальная, тангенциальная) Радиально-осевая турбина Поворотно-лопастная турбина Ковшовая турбина Пелтона (турбина Турго) Ротор Дарье Турбина Уэльса Турбина Тесла Турбина Франциса Сегнерово колесо
См. также: Вечный двигатель Мотор-редуктор Резиномотор

Wikimedia Foundation . 2010 .


19 Июля 2011 Сегодня мы продолжим разговор о приводах механизмов. Предметом нашего рассмотрения станут синхронные линейные двигатели, в последнее время составляющие конкуренцию классическим схемам «серводвигатель-ШВП» и «серводвига­тель-рейка». Практически все производители серводвигателей предлагают на нашем рынке и линейные двигатели (перечислены в алфавитном порядке): Fanuc (Япония), Mitsubishi (Япония), Sew-eurodrive (Германия), Siemens (Германия). Присутствует на рынке и производитель из СНГ - белорусское СП «Рухсервомотор». Каталоги и материалы этих фирм использованы при написании статьи.

Применение линейных двигателей имеет следующие преи­мущества перед схемами с серводвигателями: точность позиционирования; возможны сверхмалые подачи (микроны); высокая скорость (свыше 3 м/с); высокое ускорение (80 м/с 2); отсутствие мертвого хода; низкий уровень шума даже при максимальной скорости; возможность реализации малых рабочих ходов; отсутствуют упругие деформации элементов привода (зубчатый ремень, винт ШВП); длительный срок службы и надежность. К недостаткам следует отнести: высокие требования к точности изготовления элементов машины; наличие системы охлаждения; высокая стоимость.
В состав типовой сервосистемы на основе линейного двигателя (рис. 1) входят: линейный двигатель, состоящий из первичной и вторичной секций; блок управления (на рисунке не показан); рабо­чий стол; направляющие качения; датчик об­ратной связи; кабелеукладочная цепь; ограничитель хода; буфер.

Для контроля скорости, положения системы и коммутации двигателя используется датчик линейных перемещений. Этот узел преобразует измеряемое перемещение в последовательность электрических сигналов, содержащих информа­цию о величине и направлении этих перемещений. Преобра­зователь состоит из измерительной головки и линейки, при этом между ними отсутствует механический контакт. Как правило, это оптоэлектрические датчики, но также могут ис­пользоваться магнитные и индукционные системы.
Линейный двигатель, как и вращающийся, состоит из двух частей: первичной и вторичной секций. Первичная сек­ция соответствует статору вращающегося двигателя. Она включает в себя шихтованный магнитопровод с трехфазной обмоткой и температурный датчик. Вторичная секция пред­ставляет собой ротор, состоящий из стального несущего каркаса с прикрепленными к нему постоянными магнитами. Первичная и вторичная секции заключены в оболочки.
Условно говоря, линейный двигатель (рис. 2) представляет собой вращающийся двигатель, который разрезан и «развернут» в плоское состояние. Соответственно, принципы работы остаются неизменными. Однако, в линейном двигателе движение совершает первичная секция (обмотка) при непод­вижной вторичной секции (роторе).


Движущее магнитное поле генерируется обмоткой первичной секции. Поля вторичной секции и результирующее магнитное поле первичной секции создают движение в соответствующем направлении посредством создания тягового усилия. Положение результирующего вектора определяется фазами токов инвертора, а амплитуда вектора, и, следовательно, развиваемое мотором усилие, задается амплитудами фазных токов.
Для нормальной работы линейного двигателя необходимо точно выдержать воздушный зазор между первичной и вторичной секциями. При увеличении зазора уменьшается нагрузочная способность двигателя. В связи с этим повышаются требования к точности исполнения монтажных поверхностей. На величину и точность воздушного зазора влияют направляющие прямолинейного движения и рабочий стол.
Как и серводвигатель, линейный двигатель управляется блоком управления. Модель блока управления определяется выбранным типом линейного двигателя.
На одной оси могут быть установлены две первичных секции, работающие параллельно от одного блока управления. Эти секции должны быть одного типоразмера с одинаковым типом обмотки. При этом расстояние между первичными секциями определяется требуемыми позициями электрических фаз. Допустимые компоновки секций и расстояния между ними приводятся в документации на двигатель.
Критическим местом для линейных двигателей является температурный режим. Производители предлагают линейные двигатели с воздушным и водяным (масляным) охлаждением. Это может быть один и тот же двигатель, работающий в разных режимах.
Конвекционное охлаждение значительно упрощает конструкцию машины, однако, при этом существенно снижается номинальное тяговое усилие (≈ в 2 раза). Максимальное усилие двигателя остается прежним. На рис. 3 представлена простейшая схема водяного охлаждения. Естественно, наличие охлаждения делает конструкцию всей машины в целом сложнее.

Стремясь улучшить охлаждение двигателя, производители вводят в его конструкцию дополнительные охлаждающие элементы. На рис. 4 (а) приведена конструкция первичной секции двигателя фирмы Sew-Eurodrive с воздушным охлаждением, в которой применен вентилятор. На рис. 4 (б) представлен линейный двигатель фирмы Siemens с дополнительным водяным радиатором направленного охлаждения первичной и контуром охлаждения вторичной секций.

Для предотвращения перегрева линейный двигатель оснащается датчиком температуры. Датчик отключает двигатель при температуре обмотки ≈ 120ºС.
К основным характеристикам линейного двигателя относят: номинальное тяговое усилие F N , H; максимальное тяговое усилие F max , H; максимальная скорость V max , м/с; сила магнитного притяжения первичной секции - длина L, мм и ширина B, мм. На рис.5 представлена типовая зависимость тягового усилия от линейной скорости. Номинальное усилие F N, задающее область работы с постоянной нагрузкой, определяется температурным режимом. С максимальным усилием двигатель может работать ограниченное время и не во всем диапазоне скоростей.

В таблице 1 приведены данные о характеристиках линейных двигателей от различных производителей. Номинальное тяговое усилие приводится при воздушном и водяном охлаждения (разделены знаком «/»). Естественно, все модели не могут быть представлены в одной таблице. Полные каталоги предоставляются производителями или их дилерами.

Таблица 1. Характеристики линейных двигателей

F max , H

Mitsubishi (тип HALM 12, 14)

Sew-Eurodrive (тип SL2-Basic)

Siemens (тип 1 FN 3)

Рухсервомотор (тип LSM-36)

V max , м/с

V max , м/с

LxB, мм

V max , м/с

LxB, мм

V max , м/с

LxB, мм





Исходными данными для расчета двигателя являются: масса движущихся частей М, кг; коэффициент трения направляющих, µ; рабочий ход L, мм; направление оси перемещения - горизонтальное, вертикальное, под углом к горизонтали; рабочие усилия F c , Н; максимальная скорость перемещения V max , м/с; время ускорения t a , сек; температура окружающей среды t, ºС. Для правильного выбора линейного двигателя необходимо иметь циклограммы нагружения, скорости и ускорения (рис.6) . Циклограмма ускорения является производной, при этом ускорение а, м/с 2 определяется по формуле а = V ÷ t a .

Выбор линейного двигателя основан на определении потребного тягового усилия. Данный расчет предполагает, что вторичная секция линейного двигателя неподвижна. На первом этапе предварительно подбираем двигатель, используя формулу
_ _ _
F max = 1,5 ∙ (F g + F a),

где F g , Н - эффективная составляющая гравитационной силы (рис.7, а) ; F a - сила энерции, возникающая при разгоне. Как правило, необходим двигатель с максимальным тяговым усилием. По данным производителя выбираем двигатель с необходимым F max и потребной скоростью V max .

Затем необходимо определить силу трения F r , Н, возникающую в направляющих качения (рис.7, б) по формуле
_ _ _
F max = µ ∙ (F n + F d),

где F n - нормальная составляющая силы трения; F d - сила магнитного притяжения первичной секции. Следовательно, можно записать F r = µ ∙ [(М+m) ∙ g ∙ sin α + F d ], где µ, кг - масса первичной секции.


Следует обратить внимание, что при применении направляющих скольжения сила трения зависит также от скорости движения, коэффициентов трения покоя и скольжения, силы прижатия клина направляющей и т.д. Для примера на рис.8 (а) приведена циклограмма именно для этого случая.
Далее определяем силу инерции F a , Н, возникающую при разгоне/торможении двигателя, используя формулу F a = (M+m) ∙ a.
Сумма сил, действующих на систему, определяется уравнением
_ _ _ _ _
F m = F c + F g + F a + F r .

Следует построить циклограммы всех действующих на двигатель сил и результирующую циклограмму (рис.8) . При этом необходимо точно определить максимально потребную силу F max , Н. Предварительно выбранный двигатель должен развивать потребное максимальное тяговое усилие.
Помимо максимальной силы, необходимо определить номинальное усилие, с которым двигатель может работать продолжительное время. Номинальное тяговое усилие F N , Н, ограничивается температурой двигателя и в общем случае определяется по формуле

t
F N = √1/t ∫ F 2 (t) dt.
0

При ступенчатой результирующей циклограмме нагружение (рис.8, б) (направляющие качения) F N = √1/t ∙ (F 1 2 t 1 + F 2 2 t 2 + F 3 2 t 3 + … + F n 2 t n).

После выбора первичной секции необходимо выбрать вторичную секцию. Длина вторичной секции (рис.9, а) L s , мм определяется по формуле L s ≥ L + L p + (2 ∙ S E), где L, мм - рабочий ход; L p , мм - активная длина первичной секции; S E , мм - запас хода на переключение (≈20 мм).

На одной вторичной секции можно устанавливать несколько первичных (рис.9, б) . При этом длина вторичной секции соответственно должна быть увеличена на длину первичной секции и на зазор между секциями. Если первичные секции управляются от различных сервоусилителей с отдельными измерительными системами (типа ведущий/ведомый привод), зазор между ними определяется требованиями механических частей системы - длина присоединительного штекера, радиус изгиба кабеля, и т.д. Если же первичные секции управляются одним блоком параллельно, зазор между ними должен быть принят в соответствие с монтажным чертежом.
Требуемый ход может быть обеспечен набором вторичных секций различной длины. Длины вторичных секций указываются производителем. Очень часто более выгодно использовать большое число коротких сегментов вместо нескольких длинных.


Как правило, можно выбрать несколько двигателей с разными размерами, имеющих примерно равные максимальное и номинальное тяговые усилия. В этом случае можно дать следующие рекомендации по выбору линейного двигателя.
Максимальное усилие не зависит от вида охлаждения. При равном номинальном усилии линейный двигатель с водяным охлаждением будет меньше, и, следовательно, дешевле. Однако к стоимости двигателя прибавится стоимость системы охлаждения. Рекомендуется использовать водяное охлаждение для двигателей с интенсивным рабочим циклом (частое ускорение, торможение, длительная работа с большим усилием).
Стоимость первичной секции линейных двигателей с равным усилием меньше у секций меньшей длины и большей ширины. Однако стоимость вторичной секции меньше при меньшей ширине. Поэтому при малом рабочем ходе (менее 1 м) рекомендуется выбирать двигатель с меньшей длиной и большей шириной первичной секции. При перемещениях свыше 1 м - первичную секцию большей длины и меньшей ширины.
Максимальная скорость линейного двигателя зависит от значения тока при заданном напряжении питания. Следует выбирать исполнение двигателя с наименьшей скоростью, наиболее близкой к потребной.
Сервоприводы относятся к той области машиностроения, которую называют «мехатроника». Этот термин объединяет понятия «механизм» и «электроника». Достижения электроники позволяют назвать практически любой современный механизм мехатронным. Вместе с тем, часто приходится слышать, что «это дорого», «это не для наших условий» и т.д. А может, стоит еще раз вспомнить слова академика В.Н.Челомея: «Чтобы система была устойчивей, ее надо часто трясти».

М. Гранкин, инженер-конструктор

Журнал «Мир техники и технологий»

Подавляющее большинство электродвигателей является электродвигателями вращательного движения. В то же время многие рабочие органы производственных машин должны по технологии своей работы осуществлять поступательное (например, конвейеры, транспортеры и др.) или возвратно-поступательное движение (механизмы подачи станков, манипуляторы, поршневые и другие машины).

Преобразование вращательного движения в поступательное осуществляется посредством специальных кинематических звеньев: винт-гайка, шарико-винтовая передача, шестерня-зубчатая рейка, кривошипно-шатунная передача и другие.

Естественным для конструкторов рабочих машин является желание использовать для привода рабочих органов, совершающих поступательное и возвратно-поступательное движение, двигателей, ротор которых движется линейно.

В настоящее время получают развитие электроприводы, использующие линейные асинхронные, вентильные и . Принципиально линейный двигатель любого типа может быть образован из двигателя вращательного движения путем линейной развертки цилиндрического статора в плоскость.

Представление об устройстве линейного асинхронного двигателя можно получить, если развернуть статор асинхронного двигателя в плоскость. При этом вектор намагничивающих сил статора будет линейно перемещаться вдоль развертки статора, т.е. при этом образуется не вращающееся (как в обычных двигателях), а бегущее электромагнитное поле статора.

В качестве вторичного элемента может использоваться ферромагнитная полоса, располагаемая с небольшим воздушным зазором вдоль развертки статора. Эта полоса играет роль короткозамкнутого ротора. Вторичный элемент увлекается движущимся полем статора и линейно перемещается со скоростью, меньшей скорости движения поля статора на величину линейного абсолютного скольжения.

Линейная скорость бегущего электромагнитного поля будет

где τ, м - полюсное деление - расстояние между соседними полюсами линейного асинхронного двигателя.

Скорость вторичного элемента

где sЛ - относительное линейное скольжение.

При питании двигателя напряжением стандартной частоты получаемые скорости поля будут достаточно велики (более 3 м/с), что затрудняет использование этих двигателей для привода промышленных механизмов. Такие двигатели применяются для высокоскоростных транспортных механизмов. Для получения более низких скоростей движения и регулирования скорости линейного асинхронного двигателя его обмотки питают от преобразователя частоты.

Рис. 1. Конструкция линейного однокоординатного двигателя.

Применяются несколько вариантов конструкций линейного асинхронного двигателя. Одна из них показана на рис. 1. Здесь вторичный элемент (2) - полоса, соединенный с рабочим органом, перемещается по направляющим 1 под действием бегущего электромагнитного поля, создаваемого статором 3. Такая конструкция удобна для компоновки с рабочей машинной, однако, она сопряжена со значительными потоками рассеяния поля статора, вследствие чего cosφ двигателя будет низким.

Рис.2. Линейный двигатель цилиндрической конструкции

Для увеличения электромагнитной связи между статором и вторичным элементом, последний размещают в прорезь между двумя статорами, либо конструкция двигателя выполняется в виде цилиндра (см. рис. 2). В этом случае статор двигателя представляет собой трубку (1), внутри которой расположены цилиндрические наборные катушки (2), являющиеся обмоткой статора. Между катушками размещены ферромагнитные шайбы 3, являющиеся частью магнитопровода. Вторичный элемент - шток трубчатой формы также выполнен из ферромагнитного материала.

Линейные асинхронные двигатели могут также иметь обращенную конструкцию, когда вторичный элемент неподвижен, а перемещается статор. Такие двигатели обычно применяются на транспортных средствах. В этом случае в качестве вторичного элемента используется рельс или специальная полоса, а статор размещается на подвижной тележке.

Недостатком линейных асинхронных двигателей является низкий к.п.д и связанные с этим потери энергии, прежде всего, во вторичном элементе (потери скольжения).

В последнее время кроме асинхронных начали применяться . Конструкция линейного двигателя такого типа аналогична представленной на рис. 1. Статор двигателя развернут в плоскость, а на вторичном элементе размещаются постоянные магниты. Возможен вариант обращенной конструкции, когда статор является подвижной частью, а вторичный элемент с постоянными магнитами неподвижен. Переключение обмоток статора производится в зависимости от относительного положения магнитов. С этой целью в конструкции предусмотрен датчик положения (4 - на рис. 1).

Для позиционных приводов эффективно применяются также линейные шаговые двигатели. Если развернуть в плоскость статор шагового двигателя, а вторичный элемент выполнить в виде пластины, на которой путем фрезерования канавок образованы зубцы, то при соответствующем переключении обмоток статора вторичный элемент будет совершать дискретное движение, шаг которого может быть весьма малым - до долей миллиметра. Часто применяется обращенная конструкция, в которой вторичный элемент неподвижен.

Скорость линейного шагового двигателя определяется величиной зубцового деления τ, числом фаз m и частотой переключения

Получение высоких скоростей движения не вызывает трудностей, поскольку увеличение зубцового деления и частоты не лимитируется технологическими факторами. Ограничения существуют для минимального значения τ, т.к. отношение зубцового деления к величине зазора между статором и вторичным элементом должно быть не меньше 10.

Использование дискретного привода позволяет не только упростить конструкцию механизмов, совершающих линейное однокоординатное движение, но и дает возможность с помощью одного привода получить двух или многокоординатное движение. Если на статоре подвижной части расположить ортогонально две системы обмоток, а во вторичном элементе выполнить канавки в двух перпендикулярных направлениях, то подвижный элемент будет совершать дискретное движение в двух координатах, т.е. обеспечивать перемещение на плоскости.

В этом случае возникает задача создания опоры для подвижного элемента. Для ее решения может использоваться воздушная подушка - напор воздуха, подаваемого в пространстве под подвижным элементам. Линейные шаговые двигатели развивают относительно низкое тяговое усилие и имеют низкий к.п.д. Основной областью их применения являются легкие манипуляторы, легкие сборочные станки, измерительные машины, станки для лазерной резки и другие устройства.